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A Josephson junction consisting of an Anderson impurity weakly coupled on one side with a two-band
superconductor and on the other side with a a single-band superconductor exposes a time-reversal breaking
ground state within a finite domain of the U-J plane �here U is the correlation strength and J is the coupling
between the two bands�. In this regime, the impurity magnetic moment is attenuated and order-parameter phase
differences across the junction are neither 0 nor �. This indicates a fundamental and distinct role of strong
correlations: driving a system into a time-reversal breaking ground state.
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I. INTRODUCTION AND MOTIVATION

Recently, there is a renewed interest in the physics of
multiband superconductors which are believed to encode the
physics behind the medium Tc=39 K superconductor MgB2
�Refs. 1–3� and the new iron-based superconductors.4–6 His-
torically, interest in two-band superconductors is related to
experiments suggesting that in some transition metals, there
is a second mechanism responsible for pairing beyond that of
electron-phonon interaction.7–10 For example, in Nb3Sn the
isotopic effect is found to be very weak.11 Besides, it is sug-
gested that interband coupling provides a possible mecha-
nism for augmenting Tc.

10,12

As was recently noticed, a useful setup for studying the
physics of two-band superconductors is a Josephson junction
involving two coupled superconductors �1,2� on one of its
sides and a single-band superconductor �3� on its other
side.13 Within a Ginzburg-Landau formalism the order pa-
rameters �1 ,�2 are coupled among themselves by a term
−J Re��1�2

�� and to the third superconductor by tunneling
�n Re��n�3

���n=1,2�. Quite unexpectedly, a time-reversal
violating ground state �TRVGS� was found for �1��2 due
to frustration between the three order parameters, while oth-
erwise, a time-reversal conserving ground state �TRCGS�
prevails.

We are motivated by the question how would strong cor-
relations affect the physics of such Josepshon junction, when
the two order parameters in the two-band superconductor are
out of phase �that is, an s� superconductor�. Will new phys-
ics emerge when strong correlation is coupled with this ad-
ditional phase frustration? Indeed, interesting physics in-
duced by strong correlation emerges already in a Josephson
junction with an Anderson impurity �of strength U� between
single-band superconductors.14–17 Within a mean-field
�Hartree-Fock� approximation15 which is reliable in the weak
to intermediate U regime when the Kondo temperature is
small compared with the superconducting gap,15,16 it was
shown that the effective Josephson coupling changes sign
when U exceeds a critical value Uc. The two superconduct-
ors are in phase ��=0� at U�Uc, and are out of phase
��=�� at U�Uc.

18 This 0→� Josephson junction transition
is associated with the formation of a large impurity magnetic
moment for U�Uc.

The rest of the paper includes a description of the model
and the main results �Sec. II�, Hamiltonian and choice of
parameters �Sec. III�, analysis of results in Sec. IV followed
by a brief discussion in Sec. V.

II. MODEL AND MAIN RESULTS

The system studied here is an Anderson impurity �level
energy 	 and correlation strength U� weakly coupled on the
left with a two-band superconductor �order parameters
�n=
nei�n, n=1,2, and interband Josepshon coupling J� and
on the right to a single-band superconductor �order param-
eter �3=
3ei�3�. This is briefly denoted as 2B-U-1B Joseph-
son junction �see Fig. 1�. We focus on the free energy, the
nature of the ground state, the impurity magnetization and
Josephson current. A TVRGS occurs if the free energy
F�����1 ,�2 ,�3�� has a minimum at some point � for which

sin��̄n− �̄3��0, �n=1,2� even in the absence of magnetic
field �see Ref. 13 for the case of 2B-1B Josephson junction
without Anderson impurity�. On the technical part, the mean-
field �Hartree-Fock� approach to the 1B-U-1B problem15,17

can be used to treat the 2B-U-1B system when U is not too
large. It enables the elucidation of the ground-state configu-
ration ��J ,U� together with the free energy F���, the Joseph-
son current J��� the impurity occupation n��� and magneti-
zation m���. Note that there exist now two independent
phase variables compared with just one in the case of
1B-U-1B junction. It implies a richer phase diagram for the

2B-U-1B system. Thus, when ��̄1,2− �̄3�=0 or � we have

∆1eiθ1 ∆2eiθ2

J
∆3eiθ3

U

FIG. 1. Geometry of the 2B-U-1B junction: the two-band super-
conductor on the left is described by two order parameters 
1ei�1

and 
2ei�2 and an interband pairing potential J. The single-band
superconductor on the right is encoded by a single-order parameter

3ei�3. Electrons can cross the junction only through hopping into
and out of the Anderson impurity U located between the
superconductors.
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�0,0� or �0,�� junctions with a TRCGS while otherwise there
is a TRVGS.

Our main results demonstrate that strong correlations af-
fect the time-reversal symmetry of the ground state. More
precisely, when the couplings �1 ,�2 between superconduct-
ors �1,2� and the impurity are distinct �here we took
�1 /�2=2.5�, two phases are identified in the U-J plane, one
for which there is TRCGS and one for which there is
TRVGS. They are separated by a sharp border line.
The TRVGS occurs for U1�J��U�U2�J� and for
0�J1�U��J�J2�U�. Here U1�U0�U2 where U0=−2	 is
the particle-hole symmetric point and J1,2�U ,�� are some
critical thresholds. The physical content of the TRVGS phase
�which is almost insensitive to the details of the other param-
eters� is remarkable, displaying a dip in the impurity
magnetization and order parameter phase differences

��̄i− �̄ j��0,�. This system is hence neither 0 nor � junction.

III. FORMALISM

The mean-field Hamiltonian is written as,
H=HL+HR+HI+Himp. The first two terms HL ,HR describe
�within the BCS formalism� the two-band superconductor on
the left �HL� and the single-band superconductor on the right
�HR�. Explicitly, in terms of quasiparticle �Nambu� field op-
erators �n

†�r�= ��n↑
† �r� ,�n↓�r�� we may write HL=�n=1

2 Hn
and HR=H3 with

Hn =	 �n
†�r�Hn�n�r�dr , �1�

Hn = 
 	n�− i�� − 
 
nei�n + Jmei�m


ne−i�n + Jme−i�m − 	n�− i�� + 

� , �2�

H3 = 
	3�− i�� − 
 
3ei�3


3e−i�3 − 	3�− i�� + 

� . �3�

Here 	�−i�� is the kinetic-energy operator derived from the
corresponding energy dispersion functions 	n�k� and 
 is the
chemical potential. Moreover, 
nei�n �Vn�n where
�n��dr
�n↓�r��n↑�r�� is the order parameter of supercon-
ductor n=1,2 ,3 and Vn is the corresponding strength of the
pairing potential. Similarly, Jmei�m � I�m�m�n=1,2� en-
codes the pairing field in band n due to electrons pairing in
band m �interband Josephson effect� and I is the strength of
the coupling between the two bands.10 The two-band Hamil-
tonian densities Hn=1,2 are derived from the two-band model
Hamiltonian of Ref. 10. In this Hamiltonian �Eq. �1� therein�,
there is only intraband pairing �and no interband pairing� and
the electrons in the two bands are coupled only through an
effective Josephson coupling.

The tunneling part HI contains hopping between the im-
purity to each one of the three superconductors �with differ-
ent strengths tn=1,2,3�, which occurs at a single point. Finally,
the strong correlation part has the usual structure of an
Anderson impurity Hamiltonian. Using again Nambu spinor
notation C= �c↑

† ,c↓� we have

HI = − �
n=1

3

tn��n
†�0��3C + C†�3�n�0�� , �4�

Himp = 	̄C†�3C +
1

2
U�C†C�2, 	̄ = 	 +

U

2
. �5�

The procedure for calculating the free energy F��� is a
modified version of the algorithm used in Refs. 15 and 17. It
involves an Euclidean path integral for the partition function
Z=e−�F �F is the free energy�, in terms of Grassman fields
and employing Hubbard-Stratonovich transformation for
treating the quartic term in Himp at the expense of an addi-
tional integration on a new field �. The latter is carried out
within the saddle-point approximation leading to a self-
consistent equation �Hartree-Fock approximation�.

Beside the density of states at the Fermi energy N�
�
�assumed constant� and the impurity level �partial�
widths �n=�tn

2N�
� for the superconductor n=1,2 ,3,
the basic input quantities are defined below �with �=�k
= �2k+1��T�k=0,1 ,2 , . . .� a Matsubara frequency at tem-
perature T=1 /� and ��f�����kf��k��

�n=1,2��� = �n�
n
2 + Jm

2 + 2
nJm cos��1 − �2� + �2�−1/2,

�3 = �3�
3
2 + �2�−1/2, ���� = �
1 + �

n=1

3

�n���� .

q1��� = �1���
1 + �2���J1,

q2��� = �2���
2 + �1���J2, q3��� = �3���
3,

F��;�� � �
n=1

3

qn
2 + 2 �

n�n�

qnqn� cos��n − �n�� . �6�

The self-consistent equation for the field � �analogous to Eq.
7 in Ref. 15 or Eq. 12 in Ref. 17� reads

1

2U
− T�

�

��2 + ����2 − 	̄2 − F��,���
��2 − ����2 − 	̄2 − F��,���2 + 4�2����2 = 0,

�7�

whose solution �̄��� is used below.

Choice of parameters

The choice of fixed parameters


1,3 = 1.0, 
2 = 0.8, �1 = 0.5, �2 = �3 = 0.2, 	 = − 2

�8�

is guided by the need to break the 1↔2 symmetry since it
was shown13 that for noticeable different Josephson tunnel-
ing strengths �1��2 and for U=0, there is no TRVGS in a
2B-1B junction while here we intend to show that for
U�0 it does exist. Since it is rather difficult to tailor the
ratio such that �1 /�2�1 we adopt a reasonable ratio of 2.5
which proves to be sufficient for our purpose. Otherwise, the
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values of the energy parameters �expressed in terms of 
1
=1� are reasonable. Finally, we found it more convenient to
work at finite temperature T=0.0005 �at this range the sen-
sitivity to temperature is negligible�.

IV. ANALYSIS OF THE RESULTS

The free energy associated with the impurity is the
coefficient of −� in the exponent of the partition function
Z=e−�F and the formalism described above yields for it the
following expression:

F��� =
�̄2

2U
+ 	̄ −

T

2
,

�
�

ln��4��̄2 − ����2 − 	̄2 − F��,���2 + 4�̄2����2� . �9�

Employing gauge invariance and setting �3=0, the minimum

�= ��̄1 , �̄2 ,0� of F��� is located. If sin �̄1=sin �̄2=0 one evi-
dently has a TRCGS. On the other hand, when the above
condition is not satisfied, one has a TRVGS. In the absence
of Anderson impurity and close to perfect symmetry ��1 it

occurs for J�0 at �̄1�−�̄2� �
2 . For U�0 the property

�̄1�−�̄2� �
2 is expected to be somewhat modified and re-

gions with sin �̄1 , sin �̄2�0 are those where TRVGS is real-

ized. In Fig. 2�a� the phases �̄1,2 are displayed as function of
J for fixed U while in Fig. 2�b� they are displayed as function
of U for fixed J. In each case we can identify three regions,
left, right, and middle. For the first two we have

sin �̄1=sin �̄2=0 corresponding to a TRCGS. In between we

identify a phase with sin �̄1 sin �̄2�0 which clearly indicates
a TRVGS.

Perhaps an appropriate candidate for identifying such an
extraordinary ground state is by inspecting the behavior of
the impurity magnetization as function of J and U in the
TRVGS phase and compare it with its characteristics in the
TRCGS. This is displayed in Fig. 3 which, beside the impu-
rity magnetization depicts also the ground-state energy. The
conclusion from Fig. 3 is that while the ground-state energy

is smooth across the TRCGS-TRVGS phase boundary the
impurity magnetic moment undergoes a sizable reduction in
the TRVGS phase compared with its value in the TRCGS
phase.

The occurrence of TRVGS implies the existence of non-
zero Josephson currents Jn3 �n=1,2� between the coupled
superconductors �1,2� and the third superconductor 3 even in
the absence of magnetic field. The net Josephson current
J=J13+J23 should vanish though. Recall that in a junction
with single-band superconductors J= e

�

�Egs�cos ��
�� where � is

the order-parameter phase difference between left and right
superconductors. Vanishing of the current �in the absence of
an external magnetic field� is associated with the fact that the
ground state always occurs at �=0 �zero junction� or �=�
�� junction�. For the 2B-U-1B studied here the situation is
distinct: there are nonzero currents across the junction but
their sum vanishes. The derivation of the total current J from
F��� reads

J =
e

�

�F���
��3

= −
e

�

 �F���

���1 − �3�
+

�F���
���2 − �3�� � J13

+ J23, �evaluated at � = �� . �10�

The currents J13 and J23 are displayed in Fig. 4, and indeed,
J13�−J23 are both nonzero in the TRVGS. There is a very
small deviation of the net Josephson current from zero. This
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FIG. 2. �Color online� Phases �̄1,2 of the ground state: �a� as
function of J for U=4 and �b�: as function of U for J=0.2. Other
parameters are given in Eq. �8�. The ground states for J�J1 and
J�J2 �marked by arrows� are �0,0� and �0,�� �both are TRCGS�
while for J1�J�J2 there is a phase of TRVGS. The ground states
for U�U1 and U�U2 �marked by arrows� are �0,�� �both are
TRCGS� while for U1�U�U2 there is a phase of TRVGS.
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FIG. 3. �Color online� Left scale �right scale�: ground-state en-
ergy �impurity magnetization� �a� as function of J for U=4 and �b�
as function of U for J=0.2. Other parameters are given in Eq. �8�.
While the energy is a very smooth function the magnetization has a
deep minimum in the TRVGS phase and its jumps correspond to the

configuration ��̄1 , �̄2� of the ground state displayed in Fig. 2.

FIG. 4. �Color online� Josephson currents J13 and J23 �in units
e�

 � �a� as function of J for U=4 and �b� as function of U for
J=0.2. Other constants are as in Eq. �8�. The jumps correspond to

the configuration ��̄1 , �̄2� of the ground state displayed in Fig. 2.
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is probably an artifact of the assumption that 
1,2,3 is con-
stant in space �as was noticed in Ref. 13�.

V. DISCUSSION

To understand the mechanism which drives the formation
of the TRVGS state, we recall the case of single-band super-
conductor Josephson junction.15 It was found that the effec-
tive Josephson coupling between the two superconductors
mediated through the Anderson Impurity changes sign when
U goes through a critical value Uc. The two superconductors
are in phase ��=0� at U�Uc and are out of phase ��=�� at
U�Uc. The transition can be described phenomenologically
by a Josephson free energy FJos��1−�2��T�U�cos��1−�2�
where T�U� changes sign at U=Uc. We now replace one of
the superconductors by a two-band superconductor. In this
case the effective Josephson coupling FJos between the dif-
ferent �n’s generated by the impurity has the form

FJos � T13�U,J�cos��1 − �3� + T23�U,J�cos��2 − �3�

+ T12�U,J�cos��1 − �2� + �
n,m

Wmn�U,J�

��cos��n�cos��m�� + higher order terms, �11�

where T13�U� and T23�U� become small and change sign
around U�Uc and higher-order terms in FJos becomes im-
portant in determining the phase structure if T12�J is also
small. The higher-order Josephson terms arises from �n���’s
and F�� ;�� in Eq. �6� which has much more complicated
structure than the case of one-band superconductor15 and
have comparable magnitudes. Apparently, the more compli-
cated phase structure allowed in the 2B-U-1B Josephson
junction leads to appearance of more local extrema of free
energy FJos in the ��1 ,�2� plane at values other than �0,��,
which is in sharp contrast to the 1B-U-1B system where only
one phase angle �=�1−�2 appears15 and local extrema exist
only at �=0,�. The appearance of these new energy extrema
for a large range of parameters Wmn can be demonstrated by
minimizing the effective free energy, Eq. �11�, �without the
higher-order terms� around the critical region U�Uc and
J�Jc. As U increases these local extrema in FJos becomes
global minima in free energy leading to the appearance of
TRVGS around the critical region as shown in Figs. 2�a� and

2�b�. We note from Figs. 2�a�, 2�b�, 3�a�, and 3�b� that as J
and U change there exists a series of mean-field solutions
with different values of �1 and �2 and with correspondingly
slightly different values of magnetization m. The different
plausible fractionalized values of magnetization m for differ-
ent junctions where J and U differ unavoidably is a signal of
TRVGS which can be detected experimentally besides the
experiments proposed in Ref. 13.

VI. CONCLUSIONS

The study of 2B-U-1B carried out here is motivated by
the renewed interest in multiband superconductors �stem-
ming from the analysis of the iron-based superconductors�.
The pertinent physics is fundamentally distinct from that of a
1B-U-1B system15,17 and the 2B-1B junction discussed in
Ref. 13 since the roles of strong correlations U and the cou-
pling J between the two order parameters in the two-band
superconductor interlace. It has been shown that there is a
finite domain in the U-J plan where a TRVGS emerges even
when the coupling ratio �1 /�2 differs significantly from
unity. The TRVGS is characterized by small value of the
impurity magnetic moment and by unusual values of order-
parameter phase differences between superconductors

��̄i− �̄ j��0,�. In the nomenclature of Josephson junctions
pertaining to single-band superconductors TRVGS exhibits
neither zero nor � junction even without a magnetic field.
The role of strong correlations in controlling the TR symme-
try of the ground state is evidently remarkable. As far as an
experimental detection is concerned, beside the experiments
proposed in Ref. 13, our preliminary results indicate that
some quantities �such as impurity magnetization� undergo a
dramatic change as J or U cross the phase boundary, hence a
Josephson junction with Anderson impurity can serve as a
potential tool for probing the relative phase of the two order
parameters in a two-band superconductor �which is a very
elusive quantity�.
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